Vision - An Architecture for Global Illumination Calculations

  • Authors:
  • Philipp Slusallek;Hans-Peter Seidel

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Visualization and Computer Graphics
  • Year:
  • 1995

Quantified Score

Hi-index 0.00

Visualization

Abstract

So far, the problem of global illumination calculation has almost exclusively been approached from an algorithmic point of view. In this paper we propose an architectural approach to global illumination. The proposed rendering architecture Vision is derived from a model of the physical rendering process, which is subsequently mapped onto an object-oriented hierarchy of classes. This design is powerful and flexible enough to support and exploit a large body of existing illumination algorithms for the simulation of various aspects of the underlying physical model. Additionally, the Vision architecture offers a platform for developing new algorithms and for combining them to create new rendering solutions.We discuss both abstract design as well as implementation issues. In particular, we give a detailed description of the global Lighting subsystem and show how algorithms for path tracing, bidirectional estimators, irradiance caching, hierarchical radiosity, wavelet radiosity, and wavelet radiance have been implemented within Vision.