FPGAs vs. CPUs: trends in peak floating-point performance

  • Authors:
  • Keith Underwood

  • Affiliations:
  • Sandia National Laboratories, Albuquerque, NM

  • Venue:
  • FPGA '04 Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Moore's Law states that the number of transistors on a device doubles every two years; however, it is often (mis)quoted based on its impact on CPU performance. This important corollary of Moore's Law states that improved clock frequency plus improved architecture yields a doubling of CPU performance every 18 months. This paper examines the impact of Moore's Law on the peak floating-point performance of FPGAs. Performance trends for individual operations are analyzed as well as the performance trend of a common instruction mix (multiply accumulate). The important result is that peak FPGA floating-point performance is growing significantly faster than peak floating-point performance for a CPU.