Computing correlated equilibria in multi-player games

  • Authors:
  • Christos H. Papadimitriou

  • Affiliations:
  • UC Berkeley, Berkeley, CA

  • Venue:
  • Proceedings of the thirty-seventh annual ACM symposium on Theory of computing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We develop a polynomial-time algorithm for finding correlated equilibria (a well-studied notion of rationality due to Aumann that generalizes the Nash equilibrium) in a broad class of succinctly representable multiplayer games, encompassing essentially all known kinds, including all graphical games, polymatrix games, congestion games, scheduling games, local effect games, as well as several generalizations. Our algorithm is based on a variant of the existence proof due to Hart and Schmeidler [11], and employs linear programming duality, the ellipsoid algorithm, Markov chain steady state computations, as well as application-specific methods for computing multivariate expectations.