Particle transport and image synthesis

  • Authors:
  • James Arvo;David Kirk

  • Affiliations:
  • Apollo Systems Division of Hewlett-Packard, 300 Apollo Drive, Chelmsford, MA;California Institute of Technology, Computer Science 256-80, Pasadena, CA

  • Venue:
  • SIGGRAPH '90 Proceedings of the 17th annual conference on Computer graphics and interactive techniques
  • Year:
  • 1990

Quantified Score

Hi-index 0.00

Visualization

Abstract

The rendering equation is similar to the linear Boltzmann equation which has been widely studied in physics and nuclear engineering. Consequently, many of the powerful techniques which have been developed in these fields can be applied to problems in image synthesis. In this paper we adapt several statistical techniques commonly used in neutron transport to stochastic ray tracing and, more generally, to Monte Carlo solution of the rendering equation. First, we describe a technique known as Russian roulette which can be used to terminate the recursive tracing of rays without introducing statistical bias. We also examine the practice of creating ray trees in classical ray tracing in the light of a well-known technique in particle transport known as splitting. We show that neither ray trees nor paths as described in [10] constitute an optimal sampling plan in themselves and that a hybrid may be more efficient.