Reducing the sub-threshold and gate-tunneling leakage of SRAM cells using Dual-Vt and Dual-Tox assignment

  • Authors:
  • Behnam Amelifard;Farzan Fallah;Massoud Pedram

  • Affiliations:
  • University of Southern California, Los Angeles, CA;Fujitsu Labs of America, Sunnyvale, CA;University of Southern California, Los Angeles, CA

  • Venue:
  • Proceedings of the conference on Design, automation and test in Europe: Proceedings
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Aggressive CMOS scaling results in low threshold voltage and thin oxide thickness for transistors manufactured in very deep submicron regime. As a result, reducing the subthreshold and gate-tunneling leakage currents has become one of the most important criteria in the design of VLSI circuits. This paper presents a method based on dual-Vt and dual-Tox assignment to reduce the total leakage power dissipation of SRAMs while maintaining their performance. The proposed method is based on the observation that the read and write delays of a memory cell in an SRAM block depend on the physical distance of the cell from the sense amplifier and the decoder. Thus, the idea is to deploy different types of six-transistor SRAM cells corresponding to different threshold voltage and oxide thickness assignments for the transistors. Unlike other techniques for low-leakage SRAM design, the proposed technique incurs neither area nor delay overhead. In addition, it results in a minor change in the SRAM design flow. Simulation results with a 65nm process demonstrate that this technique can reduce the total leakage power dissipation of a 64Kb SRAM by more than 50%.