Ultra low-cost defect protection for microprocessor pipelines

  • Authors:
  • Smitha Shyam;Kypros Constantinides;Sujay Phadke;Valeria Bertacco;Todd Austin

  • Affiliations:
  • University of Michigan;University of Michigan;University of Michigan;University of Michigan;University of Michigan

  • Venue:
  • Proceedings of the 12th international conference on Architectural support for programming languages and operating systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The sustained push toward smaller and smaller technology sizes has reached a point where device reliability has moved to the forefront of concerns for next-generation designs. Silicon failure mechanisms, such as transistor wearout and manufacturing defects, are a growing challenge that threatens the yield and product lifetime of future systems. In this paper we introduce the BulletProof pipeline, the first ultra low-cost mechanism to protect a microprocessor pipeline and on-chip memory system from silicon defects. To achieve this goal we combine area-frugal on-line testing techniques and system-level checkpointing to provide the same guarantees of reliability found in traditional solutions, but at much lower cost. Our approach utilizes a microarchitectural checkpointing mechanism which creates coarse-grained epochs of execution, during which distributed on-line built in self-test (BIST) mechanisms validate the integrity of the underlying hardware. In case a failure is detected, we rely on the natural redundancy of instructionlevel parallel processors to repair the system so that it can still operate in a degraded performance mode. Using detailed circuit-level and architectural simulation, we find that our approach provides very high coverage of silicon defects (89%) with little area cost (5.8%). In addition, when a defect occurs, the subsequent degraded mode of operation was found to have only moderate performance impacts, (from 4% to 18% slowdown).