Low-overhead Fmax calibration at multiple operating points using delay-sensitivity-based path selection

  • Authors:
  • Somnath Paul;Hamid Mahmoodi;Swarup Bhunia

  • Affiliations:
  • Case Western Reserve University, Cleveland, OH;San Francisco State University, San Francisco, CA;Case Western Reserve University, Cleveland, OH

  • Venue:
  • ACM Transactions on Design Automation of Electronic Systems (TODAES)
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Maximum operating frequency (Fmax) of a system often needs to be determined at multiple operating points, defined by voltage and temperatures. Such calibration is important for the speed binning process, where the voltage-frequency (V-Fmax) relation needs to be accurately determined to sort chips into different bins that can be used for different applications. Moreover, adaptive systems typically require Fmax calibration at multiple operating points in order to dynamically change operating condition such as supply voltage or body bias for power, temperature, or throughput management. For example, a Dynamic Voltage and Frequency Scaling (DVFS) system requires accurate delay calibration at multiple operating voltages in order to apply the correct operating frequency corresponding to a scaled supply. In this article, we propose a low-overhead design technique that allows efficient characterization of Fmax at different operating voltages and temperatures. The proposed method selects a set of representative timing paths in a circuit based on their temperature and voltage sensitivities and dynamically configures them into a ring oscillator to compute the critical path delay. Compared to existing Fmax calibration approaches, the proposed approach provides the following two main advantages: (1) it introduces a delay sensitivity metric to isolate few representative timing paths; (2) it considers actual timing paths instead of critical path replicas, thereby accounting for local within-die delay variations. The all-digital calibration method is robust under process variations and achieves high delay estimation accuracy ( 4% error) at the cost of negligible design overhead (1.7% in delay, 0.3% in power, and 3.5% in die-area).