A transition-signaling bundled data NoC switch architecture for cost-effective GALS multicore systems

  • Authors:
  • Alberto Ghiribaldi;Davide Bertozzi;Steven M. Nowick

  • Affiliations:
  • ENDIF, University of Ferrara, Ferrara, Italy;ENDIF, University of Ferrara, Ferrara, Italy;Columbia University, New York, NY

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Asynchronous networks-on-chip (NoCs) are an appealing solution to tackle the synchronization challenge in modern multicore systems through the implementation of a GALS paradigm. However, they have found only limited applicability so far due to two main reasons: the lack of proper design tool flows as well as their significant area footprint over their synchronous counterparts. This paper proposes a largely unexplored design point for asynchronous NoCs, relying on transition-signaling bundled data, which contributes to break the above barriers. Compared to an existing lightweight synchronous switch architecture, xpipesLite, the post-layout asynchronous switch achieved a 71% reduction in area, up to 85% reduction in overall power consumption, and a 44% average reduction in energy-per-flit, while mastering the more stringent timing assumptions of this solution with a semi-automated synthesis flow.