A fast pseudo-boolean constraint solver

  • Authors:
  • Donald Chai;Andreas Kuehlmann

  • Affiliations:
  • University of California at Berkeley, CA;University of California at Berkeley, CA

  • Venue:
  • Proceedings of the 40th annual Design Automation Conference
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Linear Pseudo-Boolean (LPB) constraints denote inequalities between arithmetic sums of weighted Boolean functions and provide a significant extension of the modeling power of purely propositional constraints. They can be used to compactly describe many discrete EDA problems with constraints on linearly combined, parameterized weights, yet also offer efficient search strategies for proving or disproving whether a satisfying solution exists. Furthermore, corresponding decision procedures can easily be extended for minimizing or maximizing an LPB objective function, thus providing a core optimization method for many problems in logic and physical synthesis. In this paper we review how recent advances in satisfiability (SAT) search can be extended for pseudo-Boolean constraints and describe a new LPB solver that is based on generalized constraint propagation and conflict-based learning.