An Empirical Study of Speed and Communication in Globally Distributed Software Development

  • Authors:
  • James D. Herbsleb;Audris Mockus

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Software Engineering
  • Year:
  • 2003

Quantified Score

Hi-index 0.03

Visualization

Abstract

Global software development is rapidly becoming the norm for technology companies. Previous qualitative research suggests that distributed development may increase development cycle time for individual work items (modification requests). We use both data from the source code change management system and survey data to model the extent of delay in a distributed software development organization and explore several possible mechanisms for this delay. One key finding is that distributed work items appear to take about two and one-half times as long to complete as similar items where all the work is colocated. The data strongly suggest a mechanism for the delay, i.e., that distributed work items involve more people than comparable same-site work items, and the number of people involved is strongly related to the calendar time to complete a work item. We replicate the analysis of change data in a different organization with a different product and different sites and confirm our main findings. We also report survey results showing differences between same-site and distributed social networks, testing several hypotheses about characteristics of distributed social networks that may be related to delay. We discuss implications of our findings for practices and collaboration technology that have the potential for dramatically speeding distributed software development.