Automatic Tuning of Two-Level Caches to Embedded Applications

  • Authors:
  • Ann Gordon-Ross;Frank Vahid;Nikil Dutt

  • Affiliations:
  • -;-;-

  • Venue:
  • Proceedings of the conference on Design, automation and test in Europe - Volume 1
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

The power consumed by the memory hierarchy of a microprocessor can contribute to as much as 50% of the total microprocessor system power, and is thus a good candidate for optimizations. We present an automated method for tuning two-level caches to embedded applications for reduced energy consumption. The method is applicable to both a simulation-based exploration environment and a hardware-based system prototyping environment. We introduce the two-level cache tuner, or TCaT - a heuristic for searching the huge solution space of possible configurations. The heuristic interlaces the exploration of the two cache levels and searches the various cache parameters in a specific order based on their impact on energy. We show the integrity of our heuristic across multiple memory configurations and even in the presence of hardware/software partitioning -- a common optimization capable of achieving significant speedups and/or reduced energy consumption. We apply our exploration heuristic to a large set of embedded applications. Our experiments demonstrate the efficacy of our heuristic: on average the heuristic examines only 7% of the possible cache configurations, but results in cache sub-system energy savings of 53%, only 1% more than the optimal cache configuration. In addition, the configured cache achieves an average speedup of 30% over the base cache configuration due to tuning of cache line size to the application's needs.