A Lightweight Concurrent Fault Detection Scheme for the AES S-Boxes Using Normal Basis

  • Authors:
  • Mehran Mozaffari-Kermani;Arash Reyhani-Masoleh

  • Affiliations:
  • Department of Electrical and Computer Engineering, The University of Western Ontario, London, Canada;Department of Electrical and Computer Engineering, The University of Western Ontario, London, Canada

  • Venue:
  • CHES '08 Proceeding sof the 10th international workshop on Cryptographic Hardware and Embedded Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.01

Visualization

Abstract

The use of an appropriate fault detection scheme for hardware implementation of the Advanced Encryption Standard (AES) makes the standard robust to the internal defects and fault attacks. To minimize the overhead cost of the fault detection AES structure, we present a lightweight concurrent fault detection scheme for the composite field realization of the S-box using normal basis. The structure of the S-box is divided into blocks and the predicted parities of these blocks are obtained. Through an exhaustive search among all available composite fields and transformation matrices that map the polynomial basis representation in binary field to the normal basis representation in composite field, we have found the optimum solution for the least overhead S-box and its parity predictions. Finally, using FPGA implementations, the complexities of the proposed schemes are compared to those of the previously reported ones. It is shown that the FPGA implementations of the S-box using normal basis representation in composite fields outperform the traditional ones using polynomial basis for both with and without fault detection capability.