Supporting vertical links for 3D networks-on-chip: toward an automated design and analysis flow

  • Authors:
  • Igor Loi;Federico Angiolini;Luca Benini

  • Affiliations:
  • University of Bologna, Viale Risorgimento, Bologna, Italy;University of Bologna, Viale Risorgimento, Bologna, Italy;University of Bologna, Viale Risorgimento, Bologna, Italy

  • Venue:
  • Proceedings of the 2nd international conference on Nano-Networks
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Three-dimensional (3D) manufacturing technologies are viewed as promising solutions to the bandwidth bottlenecks in VLSI communication. At the architectural level, Networks-on-chip (NoCs) have been proposed to address the complexity of interconnecting an ever-growing number of cores, memories and peripherals. NoCs are a promising choice for implementing scalable 3D interconnect architectures. However, the development of 3D NoCs is still at an early development stage. In this paper, we present a semi-automated design flow for 3D NoCs. Starting from an accurate physical and geometric model of Through-Silicon Vias (TSVs), we extract a circuit-level model for vertical interconnections, and we use it to evaluate the design implications of extending switch architectures with ports in the vertical direction. In addition, we present a design flow allowing for post-layout simulation of NoCs with links in all three physical dimensions.