Reducing the number of lines in reversible circuits

  • Authors:
  • Robert Wille;Mathias Soeken;Rolf Drechsler

  • Affiliations:
  • University of Bremen, Bremen, Germany;University of Bremen, Bremen, Germany;University of Bremen, Bremen, Germany

  • Venue:
  • Proceedings of the 47th Design Automation Conference
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Reversible logic became a promising alternative to traditional circuits because of its applications e.g. in low-power design and quantum computation. As a result, design of reversible circuits attracted great attention in the last years. The number of circuit lines is thereby a major criterion since it e.g. affects the still limited resource of qubits. Nevertheless, all approaches introduced so far for synthesis of complex reversible circuits need a significant amount of additional circuit lines -- sometimes orders of magnitude more than the primary inputs. In this paper, we propose a post-process optimization method that addresses this problem. The general idea is to merge garbage output lines with appropriate constant input lines. To this end, parts of the circuits are re-synthesized. Experimental results show that by applying the proposed approach, the number of circuit lines can be reduced by 17% on average - in the best case by more than 40%. At the same time, the increase in the number of gates and the quantum costs, respectively, can be kept small.