A transformation based algorithm for reversible logic synthesis

  • Authors:
  • D. Michael Miller;Dmitri Maslov;Gerhard W. Dueck

  • Affiliations:
  • University of Victoria, Victoria, BC, Canada;University of New Brunswick, Fredericton, NB, Canada;University of New Brunswick, Fredericton, NB, Canada

  • Venue:
  • Proceedings of the 40th annual Design Automation Conference
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

A digital combinational logic circuit is reversible if it maps each input pattern to a unique output pattern. Such circuits are of interest in quantum computing, optical computing, nanotechnology and low-power CMOS design. Synthesis approaches are not well developed for reversible circuits even for small numbers of inputs and outputs.In this paper, a transformation based algorithm for the synthesis of such a reversible circuit in terms of n × n Toffoli gates is presented. Initially, a circuit is constructed by a single pass through the specification with minimal look-ahead and no back-tracking. Reduction rules are then applied by simple template matching. The method produces near-optimal results for 3-input circuits and also produces very good results for larger problems.