Securing netlist-level FPGA design through exploiting process variation and degradation

  • Authors:
  • Jason Xin Zheng;Miodrag Potkonjak

  • Affiliations:
  • University of California, Los Angeles, CA, USA;University of California, Los Angeles, CA, USA

  • Venue:
  • Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

The continuously widening gap between the Non-Recurring Engineering(NRE) and Recurring Engineering (RE) costs of producing Integrated Circuit (IC) products in the past few decades gives high incentives to unauthorized cloning and reverse-engineering of ICs. Existing IC Digital Rights Management (DRM) schemes often demands high overhead in area, power, and performance, or require non-volatile storage. Our goal is to develop a novel Intellectual Property (IP) protection technique that offers universal protection to both Application-Specific Integrated Circuits (ASIC) and Field-Programmable Gate-Arrays (FPGAs) from unauthorized manufacturing and reverse engineering. In this paper we show a proof-of-concept implementation of the basic elements of the technique, as well as a case study of applying the anti-cloning technique to a nontrivial FPGA design.