Active hardware metering for intellectual property protection and security

  • Authors:
  • Yousra M. Alkabani;Farinaz Koushanfar

  • Affiliations:
  • Computer Science Dept., Rice University, Houston, TX;Electrical and Computer Engineering Dept., Rice University, Houston, TX

  • Venue:
  • SS'07 Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce the first active hardware metering scheme that aims to protect integrated circuits (IC) intellectual property (IP) against piracy and runtime tampering. The novel metering method simultaneously employs inherent unclonable variability in modern manufacturing technology, and functionality preserving alternations of the structural IC specifications. Active metering works by enabling the designers to lock each IC and to remotely disable it. The objectives are realized by adding new states and transitions to the original finite state machine (FSM) to create boosted finite state machines(BFSM) of the pertinent design. A unique and unpredictable ID generated by an IC is utilized to place an BFSM into the power-up state upon activation. The designer, knowing the transition table, is the only one who can generate input sequences required to bring the BFSM into the functional initial (reset) state. To facilitate remote disabling of ICs, black hole states are integrated within the BFSM. We introduce nine types of potential attacks against the proposed active metering method. We further describe a number of countermeasures that must be taken to preserve the security of active metering against the potential attacks. The implementation details of the method with the objectives of being low-overhead, unclonable, obfuscated, stable, while having a diverse set of keys is presented. The active metering method was implemented, synthesized and mapped on the standard benchmark circuits. Experimental evaluations illustrate that the method has a low-overhead in terms of power, delay, and area, while it is extremely resilient against the considered attacks.