Techniques for Design and Implementation of Secure Reconfigurable PUFs

  • Authors:
  • Mehrdad Majzoobi;Farinaz Koushanfar;Miodrag Potkonjak

  • Affiliations:
  • Rice University;Rice University;University of California, Los Angeles

  • Venue:
  • ACM Transactions on Reconfigurable Technology and Systems (TRETS)
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Physically unclonable functions (PUFs) provide a basis for many security and digital rights management protocols. PUF-based security approaches have numerous comparative strengths with respect to traditional cryptography-based techniques, including resilience against physical and side channel attacks and suitability for lightweight protocols. However, classical delay-based PUF structures have a number of drawbacks including susceptibility to guessing, reverse engineering, and emulation attacks, as well as sensitivity to operational and environmental variations. To address these limitations, we have developed a new set of techniques for FPGA-based PUF design and implementation. We demonstrate how reconfigurability can be exploited to eliminate the stated PUF limitations. We also show how FPGA-based PUFs can be used for privacy protection. Furthermore, reconfigurability enables the introduction of new techniques for PUF testing. The effectiveness of all the proposed techniques is validated using extensive implementations, simulations, and statistical analysis.