Methodology for high level estimation of FPGA power consumption

  • Authors:
  • Vijay Degalahal;Tim Tuan

  • Affiliations:
  • Pennsylvania State University, University Park, PA;Xilinx Research Labs, Logic Drive, San Jose, CA

  • Venue:
  • Proceedings of the 2005 Asia and South Pacific Design Automation Conference
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Power consumption in FPGA designs calls for power-aware design and power budgeting early in the design cycle. In this work, we leverage the FPGA architecture to present an efficient and accurate methodology for pre-silicon dynamic power estimation of FPGA-based designs. Our methodology uses device-level simulations to characterize a coarse-grained architectural model and incorporates architectural parameters to estimate the dominant wire capacitance. Such an approach not only reduces the need for tedious and time consuming silicon characterizations but ensures accurate pre-silicon power predictions. We apply the methodology to estimate the power consumption of a state-of-the-art Spartan-3™ FPGA family, evaluate the estimation results against silicon measurements, and present a detailed power breakdown of the FPGA. Our results find that the routing resources and the clock to consume the maximum power.