Error-resilient motion estimation architecture

  • Authors:
  • Girish Vishnu Varatkar;Naresh R. Shanbhag

  • Affiliations:
  • Coordinated Science Laboratory, Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL;Coordinated Science Laboratory, Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose an energy-efficient motion estimation architecture. The proposed architecture employs the principle of error-resiliency to combat logic level timing errors that may arise in average-case designs in presence of process variations and/or due to overscaling of the supply voltage [voltage overscaling (VOS)] and thereby achieves power reduction. Error-resiliency is incorporated via algorithmic noise-tolerance (ANT). Referred to as input subsampled replica ANT (ISR-ANT), the proposed technique incorporates an input subsampled replica of the main sum-of-absolute-difference (MSAD) block for detecting and correcting errors in the MSAD block. Simulations show that the proposed technique can save up to 60% power over an optimal error-free system in a 130-nm CMOS technology. These power savings increase to 78% in a 45-nm predictive process technology. Performance of the ISR-ANT architecture in the presence of process variations indicates that average peak signal-to-noise ratio (PSNR) of the ISR-ANT architecture increases by up to 1.8 dB over that of the conventional architecture in 130-nm IBM process technology. Furthermore, the PSNR variation (σ/µ) is also reduced by 7 × over that of the conventional architecture at the slow corner while achieving a power reduction of 33%.