Noise in deep submicron digital design

  • Authors:
  • Kenneth L. Shepard;Vinod Narayanan

  • Affiliations:
  • IBM T. J. Watson Research Center, Yorktown Heights, NY;IBM T. J. Watson Research Center, Yorktown Heights, NY

  • Venue:
  • Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

As technology scales into the deep submicron regime, noise immunity is becoming a metric of comparable importance to area, timing, and power for the analysis and design of VLSI systems. This paper defines noise as it pertains to digital systems and addresses the technology trends which are bringing noise issues to the forefront. The noise sources which are plaguing digital systems are explained. A metric referred to as noise stability is defined, and a static noise analysis methodology based on this metric is introduced to demonstrate how noise can be analyzed systematically. Analysis issues associated with on-chip interconnect are also considered. This paper concludes with a discussion of the device, ciruit, layout, and logic design issues associated with noise.