Coding for system-on-chip networks: a unified framework

  • Authors:
  • Srinivasa R. Sridhara;Naresh R. Shanbhag

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL;University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • Proceedings of the 41st annual Design Automation Conference
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present a coding framework derived from a communication-theoretic view of a DSM bus to jointly address power, delay, and reliability. In this framework, the data is first passed through a nonlinear source coder that reduces self and coupling transition activity and imposes a constraint on the peak coupling transitions on the bus. Next, a linear error control coder adds redundancy to enable error detection and correction. The framework is employed to efficiently combine existing codes and to derive novel codes that span a wide range of trade-offs between bus delay, codec latency, power, area, and reliability. Simulation results, for a 1-cm 32-bit bus in a 0.18-$mu$m CMOS technology, show that 31 reduction in energy and 62 reduction in energy-delay product are achievable.