Combined system synthesis and communication architecture exploration for MPSoCs

  • Authors:
  • Martin Lukasiewycz;Martin Streubühr;Michael Glaß;Christian Haubelt;Jürgen Teich

  • Affiliations:
  • University of Erlangen-Nuremberg, Germany;University of Erlangen-Nuremberg, Germany;University of Erlangen-Nuremberg, Germany;University of Erlangen-Nuremberg, Germany;University of Erlangen-Nuremberg, Germany

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a novel design space exploration approach is proposed that enables a concurrent optimization of the topology, the process binding, and the communication routing of a system. Given an application model written in SystemC TLM 2.0, the proposed approach performs a fully automatic optimization by a simultaneous resource allocation, task binding, data mapping, and transaction routing for MPSoC platforms. To cope with the huge complexity of the design space, a transformation of the transaction level model to a graph-based model and symbolic representation that allows multi-objective optimization is presented. Results from optimizing a Motion-JPEG decoder illustrate the effectiveness of the proposed approach.