Aging-aware logic synthesis

  • Authors:
  • Mojtaba Ebrahimi;Fabian Oboril;Saman Kiamehr;Mehdi B. Tahoori

  • Affiliations:
  • Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany

  • Venue:
  • Proceedings of the International Conference on Computer-Aided Design
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

As CMOS technology scales down into the nanometer regime, designers have to add pessimistic timing margins to the circuit as guardbands to avoid timing violations due to various reliability effects, in particular accelerated transistor aging. Since aging is workload-dependent, the aging rates of different paths are non-uniform, and hence, design time delay-balanced circuits become significantly unbalanced after some operational time. In this paper, an aging-aware logic synthesis approach is proposed to increase circuit lifetime with respect to a specific guardband. Our main objective is to optimize the design timing with respect to post-aging delay in a way that all paths reach the assigned guardband at the same time. In this regard, in an iterative process, after computing the post-aging delays, the lifetime is improved by putting tighter timing constraints on paths with higher aging rate and looser constraints on paths which have less post-aging delay than the desired guarband. The experimental results shows that the proposed approach improves circuit lifetime in average by more than 3X with negligible impact on area. Our approach is implemented on top of a commercial synthesis toolchain, and hence scales very well.