VLSI implementation of discrete wavelet transform

  • Authors:
  • Aleksander Grzeszczak;Mrinal K. Mandal;Sethuraman Panchanathan;Tet Yeap

  • Affiliations:
  • -;-;-;-

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a VLSI implementation of discrete wavelet transform (DWT). The architecture is simple, modular, and cascadable for computation of one or multidimensional DWT. It comprises of four basic units: input delay, filter, register bank, and control unit. The proposed architecture is systolic in nature and performs both high- and low-pass coefficient calculations with only one set of multipliers. In addition, it requires a small on-chip interface circuitry for interconnection to a standard communication bus. A detailed analysis of the effect of finite precision of data and wavelet filter coefficients on the accuracy of the DWT coefficients is presented. The architecture has been simulated in VLSI and has a hardware utilization efficiency of 87.5%. Being systolic in nature, the architecture can compute DWT at a data rate of N/spl times/10/sup 6/ samples/s corresponding to a clock speed of N MHz.