Multilevel routing with antenna avoidance

  • Authors:
  • Tsung-Yi Ho;Yao-Wen Chang;Sao-Jie Chen

  • Affiliations:
  • National Taiwan University, Taipei, Taiwan;National Taiwan University, Taipei, Taiwan;National Taiwan University, Taipei, Taiwan

  • Venue:
  • Proceedings of the 2004 international symposium on Physical design
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

As technology advances into the nanometer territory, the antenna problem has caused significant impact on routing tools. The antenna effect is a phenomenon of plasma-induced gate oxide degradation caused by charge accumulation on conductors. It directly influences manufacturability and yield of VLSI circuits, especially in deep-submicron technology using high density plasma. Furthermore, the continuous increase of the problem size of IC routing is also a great challenge to existing routing algorithms. In this paper, we propose a novel framework for multilevel full-chip routing with antenna avoidance using a built-in jumper insertion approach. Experimental results show that our approach reduced antenna-violated gates by about 98% and also achieved 100% routing completion for all circuits.