Multilevel full-chip routing for the X-based architecture

  • Authors:
  • Tsung-Yi Ho;Chen-Feng Chang;Yao-Wen Chang;Sao-Jie Chen

  • Affiliations:
  • National Taiwan University, Taipei, Taiwan;National Taiwan University, Taipei, Taiwan;National Taiwan University, Taipei, Taiwan;National Taiwan University, Taipei, Taiwan

  • Venue:
  • Proceedings of the 42nd annual Design Automation Conference
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

As technology advances into the nanometer territory, the interconnect delay has become a first-order effect on chip performance. To handle this effect, the X-architecture has been proposed for high-performance integrated circuits. The X-architecture presents a new way of orienting a chip's microscopic interconnect wires with the pervasive use of diagonal routes. It can reduce the wirelength and via count, and thus improve performance and routability. Furthermore, the continuous increase of the problem size of IC routing is also a great challenge to existing routing algorithms. In this paper, we present the first multilevel framework for full-chip routing using the X-architecture. To take full advantage of the X-architecture, we explore the optimal routing for three-terminal nets on the X-architecture and develop a general X-Steiner tree algorithm based on the delaunay triangulation approach for the X-architecture. The multilevel routing framework adopts a two-stage technique of coarsening followed by uncoarsening, with a trapezoid-shaped track assignment embedded between the two stages to assign long, straight diagonal segments for wirelength reduction. Compared with the state-of-the-art multilevel routing for the Manhattan architecture, experimental results show that our approach reduced wirelength by 18.7% and average delay by 8.8% with similar routing completion rates and via counts.