Unifying mesh- and tree-based programmable interconnect

  • Authors:
  • André DeHon

  • Affiliations:
  • Department of Computer Science, California Institute of Technology, Pasadena, CA

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We examine the traditional, symmetric, Manhattan mesh design for field-programmable gate-array (FPGA) routing along with tree-of-meshes (ToM) and mesh-of-trees (MoT) based designs. All three networks can provide general routing for limited bisection designs (Rent's Rule with p c,p) MoT design can be mapped to a (2c,p) linear population ToM and introduce a corner turn scheme which will make it possible to perform the reverse mapping from any (2c,p) linear population ToM to a (2c,p) MoT augmented with a particular set of corner turn switches. One consequence of this latter mapping is a multilayer layout strategy for N-node, linear population ToM designs that requires only Θ(N) two-dimensional area for any p when given sufficient wiring layers. We further show upper and lower bounds for global mesh routes based on recursive bisection width and show these are within a constant factor of each other and within a constant factor of MoT and ToM layout area. In the process we identify the parameters and characteristics which make the networks different, making it clear there is a unified design continuum in which these networks are simply particular regions.