PicoServer: using 3D stacking technology to enable a compact energy efficient chip multiprocessor

  • Authors:
  • Taeho Kgil;Shaun D'Souza;Ali Saidi;Nathan Binkert;Ronald Dreslinski;Trevor Mudge;Steven Reinhardt;Krisztian Flautner

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;ARM Ltd

  • Venue:
  • Proceedings of the 12th international conference on Architectural support for programming languages and operating systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we show how 3D stacking technology can be used to implement a simple, low-power, high-performance chip multiprocessor suitable for throughput processing. Our proposed architecture, PicoServer, employs 3D technology to bond one die containing several simple slow processing cores to multiple DRAM dies sufficient for a primary memory. The 3D technology also enables wide low-latency buses between processors and memory. These remove the need for an L2 cache allowing its area to be re-allocated to additional simple cores. The additional cores allow the clock frequency to be lowered without impairing throughput. Lower clock frequency in turn reduces power and means that thermal constraints, a concern with 3D stacking, are easily satisfied.The PicoServer architecture specifically targets Tier 1 server applications, which exhibit a high degree of thread level parallelism. An architecture targeted to efficient throughput is ideal for this application domain. We find for a similar logic die area, a 12 CPU system with 3D stacking and no L2 cache outperforms an 8 CPU system with a large on-chip L2 cache by about 14% while consuming 55% less power. In addition, we show that a PicoServer performs comparably to a Pentium 4-like class machine while consuming only about 1/10 of the power, even when conservative assumptions are made about the power consumption of the PicoServer.