HOPE: an efficient parallel fault simulator for synchronous sequential circuits

  • Authors:
  • Hyung Ki Lee;Dong Sam Ha

  • Affiliations:
  • Bradley Dept. of Electr. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

HOPE is an efficient parallel fault simulator for synchronous sequential circuits that employs the parallel version of the single fault propagation technique. HOPE is based on an earlier fault simulator railed PROOFS, which employs several heuristics to efficiently drop faults and to avoid simulation of many inactive faults. In this paper, we propose three new techniques that substantially speed up parallel fault simulation: (1) reduction of faults simulated in parallel through mapping nonstem faults to stem faults, (2) a new fault injection method called functional fault injection, and (3) a combination of a static fault ordering method and a dynamic fault ordering method. Based on our experiments, our fault simulator, HOPE, which incorporates the proposed techniques, is about 1.6 times faster than PROOFS for 16 benchmark circuits