WATSON: design space boundary exploration and model generation for analog and RFIC design

  • Authors:
  • B. De Smedt;G. G.E. Gielen

  • Affiliations:
  • ESAT-MICAS Lab., Katholieke Universiteit Leuven, Belgium;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.03

Visualization

Abstract

A new method is described which gives the designer access to the design space boundaries of a circuit topology, all with transistor-level accuracy. Using multiobjective genetic optimization, the hypersurface of Pareto-optimal design points is calculated. Tradeoff analysis of competing performances at the design space boundaries is made possible by the application of multivariate regression techniques. This new methodology is illustrated with the presentation of the design space for two different types of circuits: a Miller-compensated operational transconductance amplifier and an LC-tank voltage-controlled oscillator.