Automatic abstraction and verification of verilog models

  • Authors:
  • Zaher S. Andraus;Karem A. Sakallah

  • Affiliations:
  • University of Michigan;University of Michigan

  • Venue:
  • Proceedings of the 41st annual Design Automation Conference
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Abstraction plays a critical role in verifying complex sys-tems. A number of languages have been proposed to model hardware systems by, primarily, abstracting away their wide datapaths while keeping the low-level details of their control logic. This leads to a significant reduction in the size of the state space and makes it possible to verify intricate control interactions formally. These languages, however, require that the abstraction be done manually, a tedious and error-prone process. In this paper we describe Vapor, a tool that auto-matically abstracts behavioral RTL Verilog to the CLU lan-guage used by the UCLID system. Vapor performs a sound abstraction with emphasis on minimizing false errors. Our method is fast, systematic, and complements UCLID by serving as a back-end for dealing with UCLID counterexamples. Preliminary results show the feasibility of automatic abstraction and its utility in formal verification.