Leakage minimization of nano-scale circuits in the presence of systematic and random variations

  • Authors:
  • Sarvesh Bhardwaj;Sarma B. K. Vrudhula

  • Affiliations:
  • Arizona State University;Arizona State University

  • Venue:
  • Proceedings of the 42nd annual Design Automation Conference
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a novel gate sizing methodology to minimize the leakage power in the presence of process variations. The leakage and delay are modeled as posynomials functions to formulate a geometric programming problem. The existing statistical leakage model of [18] is extended to include the variations in gate sizes as well as systematic variations. We propose techniques to efficiently evaluate constraints on the α-percentile of the path delays without enumerating the paths in the circuit. The complexity of evaluating the objectivefunction is O(|N|2) and that of evaluating the delay constraints is O(|N| + |E|) for a circuit with |N| gates and |E| wires. The optimization problem is then solved using a convex optimization algorithm that gives an exact solution.