Statistical optimization of leakage power considering process variations using dual-Vth and sizing

  • Authors:
  • Ashish Srivastava;Dennis Sylvester;David Blaauw

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI

  • Venue:
  • Proceedings of the 41st annual Design Automation Conference
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Increasing levels of process variability in sub-100nm CMOS design has become a critical concern for performance and power constraint designs. In this paper, we propose a new statistically aware Dual-Vt and sizing optimization that considers both the variability in performance and leakage of a design. While extensive work has been performed in the past on statistical analysis methods, circuit optimization is still largely performed using deterministic methods. We show in this paper that deterministic optimization quickly looses effectiveness for stringent performance and leakage constraints in designs with significant variability. We then propose a statistically aware dual-Vt and sizing algorithm where both delay constraints and sensitivity computations are performed in a statistical manner. We demonstrate that using this statistically aware optimization, leakage power can be reduced by 15-35% compared to traditional deterministic analysis. The improvements increase for strict delay constraints making statistical optimization especially important for high performance designs.