Distributed sleep transistor network for power reduction

  • Authors:
  • Changbo Long;Lei He

  • Affiliations:
  • University of Wisconsin, Madison;UCLA

  • Venue:
  • Proceedings of the 40th annual Design Automation Conference
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Sleep transistors are effective to reduce dynamic and leakage power. The cluster-based design was proposed to reduce the sleep transistor area by clustering gates to minimize the simultaneous switching current per cluster and then inserting a sleep transistor per cluster. In the paper, we propose a novel distributed sleep transistor network (DSTN), and show that DSTN is intrinsically better than the cluster-based design in terms of the sleep transistor area and circuit performance. We reveal properties of optimal DSTN designs, and then develop an efficient algorithm for gate level DSTN synthesis. The algorithm obtains DSTN designs with up to 70.7% sleep transistor area reduction compared to cluster-based designs. Furthermore, we present custom layout designs to verify the area reduction by DSTN.