The benefits of using a walking interface to navigate virtual environments

  • Authors:
  • Roy A. Ruddle;Simon Lessels

  • Affiliations:
  • University of Leeds, Leeds, UK;University of Leeds, Leeds, UK

  • Venue:
  • ACM Transactions on Computer-Human Interaction (TOCHI)
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Navigation is the most common interactive task performed in three-dimensional virtual environments (VEs), but it is also a task that users often find difficult. We investigated how body-based information about the translational and rotational components of movement helped participants to perform a navigational search task (finding targets hidden inside boxes in a room-sized space). When participants physically walked around the VE while viewing it on a head-mounted display (HMD), they then performed 90% of trials perfectly, comparable to participants who had performed an equivalent task in the real world during a previous study. By contrast, participants performed less than 50% of trials perfectly if they used a tethered HMD (move by physically turning but pressing a button to translate) or a desktop display (no body-based information). This is the most complex navigational task in which a real-world level of performance has been achieved in a VE. Behavioral data indicates that both translational and rotational body-based information are required to accurately update one's position during navigation, and participants who walked tended to avoid obstacles, even though collision detection was not implemented and feedback not provided. A walking interface would bring immediate benefits to a number of VE applications.