Evaluating Bufferless Flow Control for On-chip Networks

  • Authors:
  • George Michelogiannakis;Daniel Sanchez;William J. Dally;Christos Kozyrakis

  • Affiliations:
  • -;-;-;-

  • Venue:
  • NOCS '10 Proceedings of the 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the emergence of on-chip networks, the power consumed by router buffers has become a primary concern. Bufferless flow control addresses this issue by removing router buffers, and handles contention by dropping or deflecting flits. This work compares virtual-channel (buffered) and deflection (packet-switched bufferless) flow control. Our evaluation includes optimizations for both schemes: buffered networks use custom SRAM-based buffers and empty buffer bypassing for energy efficiency, while bufferless networks feature a novel routing scheme that reduces average latency by 5%. Results show that unless process constraints lead to excessively costly buffers, the performance, cost and increased complexity of deflection flow control outweigh its potential gains: bufferless designs are only marginally (up to 1.5%) more energy efficient at very light loads, and buffered networks provide lower latency and higher throughput per unit power under most conditions.