Design and Analysis of a Robust Carbon Nanotube-Based Asynchronous Primitive Circuit

  • Authors:
  • Behnam Ghavami;Mohsen Raji;Hossein Pedram;Mehdi B. Tahoori

  • Affiliations:
  • Amirkabir University of Technology;Amirkabir University of Technology;Amirkabir University of Technology;Karlsruhe Institute of Technology

  • Venue:
  • ACM Journal on Emerging Technologies in Computing Systems (JETC)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Carbon Nanotube Field Effect Transistors (CNFETs) show great promise as extensions to silicon CMOS. However, CNFET-based circuits will face great fabrication challenges that will translate into important parameter variations and decreased reliability. Hence, asynchronous logic, which is intrinsically more robust to variability, seems an ideal and perhaps unavoidable choice for digital circuits in CNFET technology. This article presents the results on the design and analysis of a CNFET-based implementation of an asynchronous circuit primitive: the Muller C-element. Using a CNFET SPICE model, we evaluate the robustness of CNFET-based C-element in the presence of CNT fabrication-related nonidealities. We investigate a quantitative evaluation of how timing variability impacts the functionality of a C-element and then, extract the necessary delay constraints of the C-element circuit from the signal transition graph specification. Considering the large degrees of spatial correlation observed between the CNFETs fabricated on directionally grown CNTs, a layout technique is exploited to overcome the robustness challenges of a CNFET-based C-element. Extensive Monte Carlo simulations on the proposed technique have demonstrated the effectiveness of the proposed CNFET-based C-element by improving approximately 50X in its robustness in expense of 65% area, 47% delay, and 56% power consumption overheads. Experimental results indicate that implementation of some CNFET-based Quasi Delay Insensitive (QDI) benchmark circuits using the proposed C-element results in significant robustness improvement with negligible power and throughput overheads. As a promising step toward CNFET-based giga-scale integrated circuits, this article shows that the asynchronous logic is an effective approach to design robust integrated circuits in CNFET technology with inherent extreme physical variations.