DRG-cache: a data retention gated-ground cache for low power

  • Authors:
  • Amit Agarwal;Hai Li;Kaushik Roy

  • Affiliations:
  • Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN;Purdue University, West Lafayette, IN

  • Venue:
  • Proceedings of the 39th annual Design Automation Conference
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we propose a novel integrated circuit and architectural level technique to reduce leakage power consumption in high performance cache memories using single Vt (transistor threshold voltage) process. We utilize the concept of Gated-Ground [5] (NMOS transistor inserted between Ground line and SRAM cell) to achieve reduction in leakage energy without significantly affecting performance. Experimental results on gated-Ground caches show that data is retained (DRG-Cache) even if the memory are put in the stand-by mode of operation. Data is restored when the gated-Ground transistor is turned on. Turning off the gated-Ground transistor in turn gives large reduction in leakage power. This technique requires no extra circuitry; row decoder itself can be used to control the gated-Ground transistor. The technique is applicable to data and instruction caches as well as different levels of cache hierarchy such as the L1, L2, or L3 caches. We fabricated a test chip in TSMC 0.25m technology to show the data retention capability and the cell stability of DRG-cache. Our simulation results on 100nm and 70nm processes (Berkeley Predictive Technology Model) show 16.5% and 27% reduction in consumed energy in L1 cache and 50% and 47% reduction in L2 cache with less than 5% impact on execution time and within 4% increase in area overhead.