The Quest for Efficient Boolean Satisfiability Solvers

  • Authors:
  • Lintao Zhang;Sharad Malik

  • Affiliations:
  • -;-

  • Venue:
  • CAV '02 Proceedings of the 14th International Conference on Computer Aided Verification
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

The classical NP-complete problem of Boolean Satisfiability (SAT) has seen much interest in not just the theoretical computer science community, but also in areas where practical solutions to this problem enable significant practical applications. Since the first development of the basic search based algorithm proposed by Davis, Putnam, Logemann and Loveland (DPLL) about forty years ago, this area has seen active research effort with many interesting contributions that have culminated in state-of-the-art SAT solvers today being able to handle problem instances with thousands, and in same cases even millions, of variables. In this paper we examine some of the main ideas along this passage that have led to our current capabilities. Given the depth of the literature in this field, it is impossible to do this in any comprehensive way; rather we focus on techniques with consistent demonstrated efficiency in available solvers. For the most part, we focus on techniques within the basic DPLL search framework, but also briefly describe other approaches and look at some possible future research directions.