An FPGA-based VLIW processor with custom hardware execution

  • Authors:
  • Alex K. Jones;Raymond Hoare;Dara Kusic;Joshua Fazekas;John Foster

  • Affiliations:
  • University of Pittsburgh, Pittsburgh, PA;University of Pittsburgh, Pittsburgh, PA;University of Pittsburgh, Pittsburgh, PA;University of Pittsburgh, Pittsburgh, PA;University of Pittsburgh, Pittsburgh, PA

  • Venue:
  • Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The capability and heterogeneity of new FPGA (Field Programmable Gate Array) devices continues to increase with each new line of devices. Efficiently programming these devices is increasing in difficulty. However, FPGAs continue to be utilized for algorithms traditionally targeted to embedded DSP microprocessors such as signal and image processing applications.This paper presents an architecture that combines VLIW (Very Large Instruction Word) processing with the capability to introduce application specific customized instructions and complex hardware functions. To support this architecture, a compilation and design automation flow are described for programs written in C.Several design tradeoffs for the architecture were examined including number of VLIW functional units and register file size. The architecture was implemented on an Altera Stratix II FPGA. The Stratix II device was selected because it offers a large number of high-speed DSP (digital signal processing) blocks that execute multiply accumulate operations.We show that our combined VLIW with hardware functions exhibit as much as 230X speedup and 63X on average for computational kernels for a set of benchmarks. This allows for an overall speedup of 30X and 12X on average for signal processing benchmarks from the MediaBench.