Low-power repeaters driving RC and RLC interconnects with delay and bandwidth constraints

  • Authors:
  • Guoqing Chen;Eby G. Friedman

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY;Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Interconnect plays an increasingly important role in deep-submicrometer very large scale integrated technologies. Multiple design criteria are considered in interconnect design, such as delay, power, and bandwidth. In this paper, a repeater insertion methodology is presented for achieving the minimum power in an RC interconnect while satisfying delay and bandwidth constraints. These constraints determine a design space for the number and size of the repeaters. The minimum power is shown to occur at the edge of the design space. With delay constraints, closed form solutions for the minimum power are developed, where the average error is 7% as compared with SPICE. With bandwidth constraints, the minimum power can be achieved with minimum-sized repeaters. The effects of inductance on the delay, bandwidth, and power of an RLC interconnect with repeaters are also analyzed. By including inductance, the minimum interconnect power under a delay or bandwidth constraint decreases as compared with an RC interconnect.