Design of variable input delay gates for low dynamic power circuits

  • Authors:
  • Tezaswi Raja;Vishwani D. Agrawal;Michael Bushnell

  • Affiliations:
  • Transmeta Corp, Santa Clara, CA;Auburn University, Aubrun, AL;Rutgers University, Piscataway, NJ

  • Venue:
  • PATMOS'05 Proceedings of the 15th international conference on Integrated Circuit and System Design: power and Timing Modeling, Optimization and Simulation
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The time taken for a CMOS logic gate output to change after one or more inputs have changed is called the output delay of the gate. A conventional multi-input CMOS gate is designed to have the same input to output delay irrespective of which input caused the output to change. A gate which can offer different delays for different input-output paths through it, is known as a variable input delay(VID) gate and the maximum difference in delay between any two paths through the same gate is known as “ub”. These gates can be used for minimizing the active power of a digital CMOS circuit using a previosuly described technique called variable input delay(VID) logic. This previous publication proposed three different designs for implementating the VID gate. In this paper, we describe a technique for transistor sizing of these three flavors of the VID gate for a given delay requirement. We also describe techniques for calculating the ub of each flavor. We outline an algorithm for quick determination of the transistor sizes for a gate for a given load capacitance.