Geometric collisions for time-dependent parametric surfaces

  • Authors:
  • Brian Von Herzen;Alan H. Barr;Harold R. Zatz

  • Affiliations:
  • California Institute of Technology, Pasadena, CA;California Institute of Technology, Pasadena, CA;California Institute of Technology, Pasadena, CA

  • Venue:
  • SIGGRAPH '90 Proceedings of the 17th annual conference on Computer graphics and interactive techniques
  • Year:
  • 1990

Quantified Score

Hi-index 0.00

Visualization

Abstract

We develop an algorithm to detect geometric collisions between pairs of time-dependent parametric surfaces. The algorithm works on surfaces that are continuous and have bounded derivatives, and includes objects that move or deform as a function of time. The algorithm numerically solves for the parametric values corresponding to coincident points and near-misses between the surfaces of two parametric functions.Upper bounds on the parametric derivatives make it possible to guarantee the successful detection of collisions and near-misses; we describe a method to find the derivative bounds for many surface types. To compute collisions between new types of surfaces, the mathematical collision analysis is needed only once per surface type, rather than analyzing for each pair of surface types.The algorithm is hierarchical, first finding potential collisions over large volumes, and then refining the solution to smaller volumes. The user may specify the desired accuracy of the solution. A C-code implementation is described, with results for several non-bicubic and bicubic time-dependent parametric functions. An animation of the collision computation demonstrates collisions between complex parametric functions.