Virtual-channel flow control

  • Authors:
  • William J. Dally

  • Affiliations:
  • Artificial Intelligence Laboratory and Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

  • Venue:
  • ISCA '90 Proceedings of the 17th annual international symposium on Computer Architecture
  • Year:
  • 1990

Quantified Score

Hi-index 0.00

Visualization

Abstract

Network throughput can be increased by dividing the buffer storage associated with each network channel into several virtual channels [DalSei]. Each physical channel is associated with several small queues, virtual channels, rather than a single deep queue. The virtual channels associated with one physical channel are allocated independently but compete with each other for physical bandwidth. Virtual channels decouple buffer resources from transmission resources. This decoupling allows active messages to pass blocked messages using network bandwidth that would otherwise be left idle. Simulation studies show that, given a fixed amount of buffer storage per link, virtual-channel flow control increases throughput by a factor of 3.5, approaching the capacity of the network.