An architectural exploration of via patterned gate arrays

  • Authors:
  • Chetan Patel;Anthony Cozzie;Herman Schmit;Larry Pileggi

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Proceedings of the 2003 international symposium on Physical design
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this work we investigate the architecture of a Via Patterned Gate Array (VPGA) [1], focusing primarily on: 1) the optimal lookup table (LUT) size; and 2) a comparison the crossbar and switch block routing architectures. Unlike FPGAs, the routing architectures in a VPGA do not dominate the total area of the circuit. Therefore our results suggest that using smaller LUTs results in a much faster and smaller design. In the routing architecture comparison, our results also show that the switch block architecture is inferior to the crossbar architecture in terms of area utilization. As the number of routing tracks grows, the switch block architecture begins to dominate the total area of the design as in the case of the FPGAs.