Fluid control using the adjoint method

  • Authors:
  • Antoine McNamara;Adrien Treuille;Zoran Popović;Jos Stam

  • Affiliations:
  • University of Washington;University of Washington;University of Washington;Alias Systems

  • Venue:
  • ACM SIGGRAPH 2004 Papers
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe a novel method for controlling physics-based fluid simulations through gradient-based nonlinear optimization. Using a technique known as the adjoint method, derivatives can be computed efficiently, even for large 3D simulations with millions of control parameters. In addition, we introduce the first method for the full control of free-surface liquids. We show how to compute adjoint derivatives through each step of the simulation, including the fast marching algorithm, and describe a new set of control parameters specifically designed for liquids.