A fast decoupling capacitor budgeting algorithm for robust on-chip power delivery

  • Authors:
  • Jingjing Fu;Zuying Luo;Xianlong Hong;Yici Cai;Sheldon X.-D. Tan;Zhu Pan

  • Affiliations:
  • Tsinghua University, Beijing, P. R. China;Tsinghua University, Beijing, P. R. China;Tsinghua University, Beijing, P. R. China;Tsinghua University, Beijing, P. R. China;University of California at Riverside, Riverside CA;Tsinghua University, Beijing, P. R. China

  • Venue:
  • Proceedings of the 2004 Asia and South Pacific Design Automation Conference
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present an efficient method to budget on-chip decoupling capacitors (decaps) to optimize power delivery networks in an area efficient way. Our algorithm is based on an efficient gradient-based non-linear programming method for searching the solution. Our contributions are an efficient gradient computation method (time-domain merged adjoint network) and a novel equivalent circuit modeling technique to speed up the optimization process. Experimental results demonstrate that the algorithm is capable of efficiently optimizing very large scale P/G networks.