Projection-based statistical analysis of full-chip leakage power with non-log-normal distributions

  • Authors:
  • Xin Li;Jiayong Le;Lawrence T. Pileggi

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA;Carnegie Mellon University, Pittsburgh, PA

  • Venue:
  • Proceedings of the 43rd annual Design Automation Conference
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we propose a novel projection-based algorithm to estimate the full-chip leakage power with consideration of both inter-die and intra-die process variations. Unlike many traditional approaches that rely on log-Normal approximations, the proposed algorithm applies a novel projection method to extract a low-rank quadratic model of the logarithm of the full-chip leakage current and, therefore, is not limited to log-Normal distributions. By exploring the underlying sparse structure of the problem, an efficient algorithm is developed to extract the non-log-Normal leakage distribution with linear computational complexity in circuit size. In addition, an incremental analysis algorithm is proposed to quickly update the leakage distribution after changes to a circuit are made. Our numerical examples in a commercial 90nm CMOS process demonstrate that the proposed algorithm provides 4x error reduction compared with the previously proposed log-Normal approximations, while achieving orders of magnitude more efficiency than a Monte Carlo analysis with 104 samples.