A 3-dimensional representation for fast rendering of complex scenes

  • Authors:
  • Steven M. Rubin;Turner Whitted

  • Affiliations:
  • Bell Laboratories, Holmdel, New Jersey;Bell Laboratories, Holmdel, New Jersey

  • Venue:
  • SIGGRAPH '80 Proceedings of the 7th annual conference on Computer graphics and interactive techniques
  • Year:
  • 1980

Quantified Score

Hi-index 0.00

Visualization

Abstract

Hierarchical representations of 3-dimensional objects are both time and space efficient. They typically consist of trees whose branches represent bounding volumes and whose terminal nodes represent primitive object elements (usually polygons). This paper describes a method whereby the object space is represented entirely by a hierarchical data structure consisting of bounding volumes, with no other form of representation. This homogencity allows the visible surface rendering to be performed simply and efficiently. The bounding volumes selected for this algorithm are parallelepipeds oriented to minimize their size. With this representation, any surface can be rendered since in the limit the bounding volumes make up a point representation of the object. The advantage is that the visibility calculations consist only of a search through the data structure to determine the correspondence between terminal level bounding volumes and the current pixel. For ray tracing algorithms, this means that a simplified operation will produce the point of intersection of each ray with the bounding volumes. Memory requirements are minimized by expanding or fetching the lower levels of the hierarchy only when required. Because the viewing process has a single operation and primitive type, the software or hardware chosen to implement the search can be highly optimized for very fast execution.